# **ULTRAFLOW® 54**





Kamstrup A/S Industrivej 28, Stilling DK-8660 Skanderborg TEL: +45 89 93 10 00 FAX: +45 89 93 10 01 info@kamstrup.com www.kamstrup.com

## **Contents**

| 1  | Gen  | neral Description                              | 6               |
|----|------|------------------------------------------------|-----------------|
| 2  | Data | a                                              |                 |
| 2. | 1    | Electrical data                                | ·····           |
| 2. | 2    | Mechanical data                                | ·····           |
| 2. | 3    | Flow data                                      |                 |
| 2. | 4    | Material                                       | 8               |
| 3  | Тур  | e overview                                     | 9               |
| 4  | Ord  | ering details                                  | 10              |
| 4. | 1    | Accessories                                    | 11              |
| 4. | 2    | Pulse Transmitter                              | 11              |
| 4. | 3    | Pulse Divider                                  | 11              |
| 5  | Dim  | nensioned sketches                             | 13              |
|    |      |                                                |                 |
| 6  | Pres | ssure loss                                     |                 |
| 7  | Inst | allation                                       | 18              |
| 7. | 1    | Installation angle for ULTRAFLOW® 54           | 19              |
| 7. | 2    | Straight inlet                                 | 20              |
| 7. | 3    | Operating pressure                             | 20              |
| 7. | 4    | Humidity and condensation                      | 21              |
| 7. | 5    | Installation examples                          | 21              |
| 7. | 6    | Electrical connection                          | 23              |
| 7. | 7    | Example of connecting ULTRAFLOW® and MULTICAL® | 24              |
| 7. | 8    | Calculator with two flow sensors               | 24              |
| 8  | Fun  | ctional description                            | 26              |
| 8. | 1    | Ultrasound combined with piezo ceramics        | 26              |
| 8. | 2    | Principles                                     | 26              |
| 8. | 3    | Transient time method                          | 26              |
| 8. | 4    | Signal paths                                   | 28              |
| 8. | 5    | Measuring sequences                            | 28              |
| 8. | 6    | Function                                       | 29              |
| 8. | 7    | Guidelines for dimensioning ULTRAFLOW®         | 31              |
| 8. | 8    | Pulse output                                   | 32              |
| 8. | 9    | Pulse Transmitter/Pulse Divider                | 32              |
| 8. | 10   | Pulse emission                                 |                 |
| 8. | 11   | Accuracy                                       | 3 <sup>-2</sup> |

| 8.12 | Pow     | er consumption                                                                  | 34 |
|------|---------|---------------------------------------------------------------------------------|----|
| 8.13 | 3 Inte  | rface plug/serial data                                                          | 34 |
| 8.14 | Test    | mode                                                                            | 35 |
| 8.15 | 5 Exte  | rnally controlled start/stop                                                    | 35 |
| 8.16 | S Cou   | rse of calibration by means of serial data and externally controlled start/stop | 36 |
| 9 Ca | alibrat | ing ULTRAFLOW®                                                                  | 37 |
| 9.1  |         | allation                                                                        |    |
| 9.2  | Tech    | nnical data for ULTRAFLOW®                                                      | 37 |
| 9.3  | Star    | t-up                                                                            | 39 |
| 9.4  | Mea     | suring flow                                                                     | 39 |
| 9.5  | Evad    | cuation                                                                         | 39 |
| 9.6  | Sug     | gested test points                                                              | 40 |
| 10   | Seali   | ng                                                                              | 41 |
| 10.1 |         | mization in connection with calibration                                         |    |
| 10.2 | •       | SE TESTER                                                                       |    |
| 10.3 |         | nnical data for PULSE TESTER                                                    |    |
| 10.4 | . Hold  | I function                                                                      | 45 |
| 10.5 | 5 Pusl  | n-button functions                                                              | 45 |
| 10.6 | Usir    | g the PULSE TESTER                                                              | 45 |
| 10.7 | ' Spa   | re parts                                                                        | 46 |
| 10.8 | 3 Cha   | nging the battery                                                               | 46 |
| 11   | METE    | RTOOL                                                                           | 47 |
| 11.1 | . Intro | oduction                                                                        | 47 |
| 11.2 | 2 Syst  | em Requirements for PC                                                          | 47 |
| 11   | 1.2.1   | Interface                                                                       | 47 |
| 11   | 1.2.2   | Installation                                                                    | 49 |
| 11.3 | MET     | ERTOOL for ULTRAFLOW <sup>®</sup> X4                                            | 50 |
| 11   | 1.3.1   | Files                                                                           | 50 |
| 11   | 1.3.2   | Utilities                                                                       | 50 |
| 11   | 1.3.3   | Windows                                                                         | 50 |
| 11   | 1.3.4   | Help                                                                            | 51 |
| 11.4 | Арр     | lication                                                                        | 51 |
| 11   | 1.4.1   | COM-port selection                                                              | 51 |
| 11   | 1.4.2   | Flow meter adjustment                                                           |    |
| 11   | 1.4.3   | Programming of standard flow curve                                              |    |
|      | 1.4.4   | Pulse Divider                                                                   |    |
|      | 1.4.5   | Meter type                                                                      |    |
|      | 1.4.6   | Help                                                                            |    |
| 11.5 | hqU i   | ate                                                                             | 56 |

| 12   | Approvals                            | 57 |
|------|--------------------------------------|----|
| 12.1 | 1 The Measuring Instrument Directive | 57 |
| 12.2 | 2 CE marking                         | 57 |
| 12.3 | 3 Declaration of conformity          | 58 |
| 13   | Troubleshooting                      | 59 |
| 14   | Disposal                             | 60 |
| 15   | Documents                            | 61 |

## 1 General Description

ULTRAFLOW<sup>®</sup> 54 is a static flow sensor based on the ultrasonic principle. It is primarily used as a volume flow sensor for heat meters such as MULTICAL<sup>®</sup>. ULTRAFLOW<sup>®</sup> has been designed for use in heating installations where water is the heat-bearing medium.

ULTRAFLOW® employs ultrasonic measuring techniques and microprocessor technology. All calculating and measuring circuits are collected on one single board, providing a compact and rational design in addition to exceptionally high measuring accuracy and reliability.

The flow is measured using bidirectional ultrasonic technique based on the transit time method, proven a long-term stable and accurate measuring principle. Two ultrasonic transducers are used to send the sound signal both against and with the flow. The ultrasonic signal travelling with the flow reaches the opposite transducer first. The time difference between the two signals can be converted into flow velocity and thereby also volume.

A three-wire pulse cable is used to connect ULTRAFLOW® to the calculator. The cable supplies the flow sensor and also transfers the signal from sensor to calculator. A signal corresponding to the flow – or more correctly, a number of pulses proportional to the water volume flowing through - is transmitted.

Where ULTRAFLOW® is to be used as a flow sensor with built-in supply, e.g. if the distance between MULTICAL® and ULTRAFLOW® is 10 m or more, a Pulse Transmitter can be supplied as an accessory. If ULTRAFLOW® 54 is used as pulse generator for other equipment, it must be connected through a Pulse Transmitter. The Pulse Transmitter has a built-in supply for ULTRAFLOW® and a galvanically separated pulse output.

## 2 Data

ULTRAFLOW® 54

#### 2.1 Electrical data

Supply voltage  $3.6 \text{ V} \pm 0.1 \text{ V}$ 

Battery 3.65 VDC, D-cell lithium

(Pulse Transmitter/ Pulse Divider)

Replacement interval 6 years @  $t_{BAT}$ < 30°C

Mains supply 230 VAC +15/-30%, 50 Hz (Pulse Transmitter/ 24 VAC ±50%, 50 Hz

Pulse Divider)

Power consumption < 1 W

mains supply

Back-up mains supply Integral super-cap eliminates interruptions due to short-term power-cuts

Cable length, flow meter Max. 10 m

Cable length, Depending on the calculator

Pulse Transmitter/ Pulse Divider

EMC data Meets DS/EN 1434:2007 class C, MID E1 and E2

#### 2.2 Mechanical data

Metrological class 2 or 3

Environmental class Meets DS/EN 1434 class C

Ambient temperature 5...55°C (indoors)

Protection class

Flow sensor IP65
Pulse Transmitter/ IP54

Pulse Divider

Humidity 93% RF non-condensing

Mechanical environment MID M1

Temperature of medium 15...130°C or 15...90°C At medium temperatures above 90°C use of flange

meters is recommended. Additionally, MULTICAL® calculator or Pulse Transmitter/Pulse Divider should

be wall-mounted

Storage temp. empty

sensor

-25...70°C, 60°C at mounted/enclosed battery

Pressure stage PN16 and PN25

#### 2.3 Flow data

| Nom. flow q <sub>p</sub> | Nom. diameter | Meter factor 1) | Dynamic range                  |                                | Flow @125 Hz <sup>2)</sup> | Δp @ q <sub>p</sub> | Min. Cutoff |
|--------------------------|---------------|-----------------|--------------------------------|--------------------------------|----------------------------|---------------------|-------------|
| [m³/h]                   | [mm]          | [imp/l]         | q <sub>i</sub> :q <sub>p</sub> | q <sub>s</sub> :q <sub>p</sub> | [m³/h]                     | [bar]               | [l/h]       |
| 0.6                      | DN15 & DN20   | 300             | 1:50 & 1:100                   | 2:1                            | 1,5                        | 0.04                | 2           |
| 1.5                      | DN15 & DN20   | 100             | 1:50 & 1:100                   | 2:1                            | 4,5                        | 0.22                | 3           |
| 2.5                      | DN20          | 60              | 1:50 & 1:100                   | 2:1                            | 7,5                        | 0.03                | 5           |
| 3.5                      | DN25          | 50              | 1:50 & 1:100                   | 2:1                            | 9                          | 0.07                | 7           |
| 6                        | DN25 & DN32   | 25              | 1:50 & 1:100                   | 2:1                            | 18                         | 0.2                 | 12          |
| 10                       | DN40          | 15              | 1:50 & 1:100                   | 2:1                            | 30                         | 0.06                | 20          |
| 15                       | DN50          | 10              | 1:50 & 1:100                   | 2:1                            | 45                         | 0.14                | 30          |
| 25                       | DN65          | 6               | 1:50 & 1:100                   | 2:1                            | 75                         | 0.06                | 50          |
| 40                       | DN80          | 5               | 1:50 & 1:100                   | 2:1                            | 90                         | 0.05                | 80          |
| 60                       | DN100         | 2.5             | 1:50 & 1:100                   | 2:1                            | 180                        | 0.03                | 120         |
| 100                      | DN100         | 1.5             | 1:50 & 1:100                   | 2:1                            | 300                        | 0.07                | 200         |
| 100                      | DN125         | 1.5             | 1:50 & 1:100                   | 2:1                            | 300                        | 0.1                 | 200         |

<sup>1)</sup> The pulse figure appears from the meter's type label.

Table 1

#### 2.4 Material

#### Wetted parts

#### ULTRAFLOW® 54, $q_p$ 0.6 and 1.5 m<sup>3</sup>/h

Housing, gland DZR brass (Dezincification proof brass)

Housing, flange Stainless steel, W.no. 1.4308 Transducer Stainless steel, W.no. 1.4401

Gaskets EPDM

Reflectors Thermoplastic, PES 30% GF and stainless steel, W.no. 1.4301

Measuring pipe Thermoplastic, PES 30% GF

#### ULTRAFLOW<sup>®</sup> 54, q<sub>p</sub> 2.5 to 100 m<sup>3</sup>/h

Housing, gland DZR brass (Dezincification proof brass)

Housing, flange Red brass, RG5 or stainless steel, W.no. 1.4308 (see Order specification)

Transducer Stainless steel, W.no. 1.4401

Gaskets EPDM

Measuring pipe Thermoplastic, PES 30% GF Reflectors Stainless steel, W.no. 1.4301

#### **Electronics housing**

Base Thermoplastic, PBT 30% GF Lid Thermoplastic, PC 20% GF

#### **Connecting cable**

Silicone cable (3x0.5mm²)

<sup>&</sup>lt;sup>2)</sup> Saturation flow (125 Hz. Max. pulse frequency 128 Hz is maintained at higher flow).

## 3 Type overview

| Nom. flow q <sub>p</sub><br>[m³/h] | Installation dimensions |                |                 |            |              |              |               |  |  |
|------------------------------------|-------------------------|----------------|-----------------|------------|--------------|--------------|---------------|--|--|
| 0.6                                | G34Bx110 mm             | G1Bx130 mm     | (G1Bx190 mm)    |            |              |              |               |  |  |
| 1.5                                | G3/4Bx110 mm            | G34Bx165 mm    | G1Bx130 mm      | G1Bx190 mm | (G1Bx110 mm) | (G1Bx165 mm) | (DN20x190 mm) |  |  |
| 2.5                                | G1Bx190 mm              | DN20x190 mm    | (G1Bx130 mm)    |            |              |              |               |  |  |
| 3.5                                | G5/4Bx260 mm            | DN25x260 mm    |                 |            |              |              |               |  |  |
| 6                                  | G5/4Bx260 mm            | DN25x260 mm    | (G11/2Bx260 mm) |            |              |              |               |  |  |
| 10                                 | G2Bx300 mm              | DN40x300 mm    | (DN40x250 mm)   |            |              |              |               |  |  |
| 15                                 | DN50x270 mm             | (DN50x250 mm)  |                 |            |              |              |               |  |  |
| 25                                 | DN65x300 mm             |                |                 |            |              |              |               |  |  |
| 40                                 | DN80x300 mm             | (DN80x350 mm)  |                 |            |              |              |               |  |  |
| 60                                 | DN100x360 mm            | (DN100x400 mm) |                 |            |              |              |               |  |  |
| 100                                | DN100x360 mm            | DN125x350 mm   |                 |            |              |              |               |  |  |

<sup>(...)</sup> Country specific variants

Table 2

Thread ISO 228-1

Flange EN 1092, PN25

## 4 Ordering details

Below is a list of type numbers for ULTRAFLOW<sup>®</sup> 54.

| <b>-</b> 3)               | q <sub>p</sub> | q <sub>i</sub> | $q_s$  | Connection    | PN  | Length | Pulse figure | CCC         | Material        |
|---------------------------|----------------|----------------|--------|---------------|-----|--------|--------------|-------------|-----------------|
| Type number <sup>3)</sup> | [m³/h]         | [m³/h]         | [m³/h] | Connection    | PIN | [mm]   | [imp/l]      | (high res.) | Materiai        |
| 65-5- CAAA -XXX           | 0.6            | 0.006          | 1.2    | G3/4B (R1/2)  | 16  | 110    | 300          | 416 (484)   | Brass           |
| 65-5- CAAD -XXX           | 0.6            | 0.006          | 1.2    | G1B (R3/4)    | 16  | 130    | 300          | 416 (484)   | Brass           |
| (65-5- CAAF -XXX)         | 0.6            | 0.006          | 1.2    | G1B (R3/4)    | 16  | 190    | 300          | 416 (484)   | Brass           |
| (65-5- CDA1 -XXX)         | 1.5            | 0.015          | 3      | G1B (R3/4)    | 16  | 110    | 100          | 419 (407)   | Brass           |
| 65-5- CDAA -XXX           | 1.5            | 0.015          | 3      | G3/4B (R1/2)  | 16  | 110    | 100          | 419 (407)   | Brass           |
| 65-5- CDAC -XXX           | 1.5            | 0.015          | 3      | G34B (R1/2)   | 16  | 165    | 100          | 419 (407)   | Brass           |
| 65-5- CDAD -XXX           | 1.5            | 0.015          | 3      | G1B (R¾)      | 16  | 130    | 100          | 419 (407)   | Brass           |
| (65-5- CDAE -XXX)         | 1.5            | 0.015          | 3      | G1B (R3/4)    | 16  | 165    | 100          | 419 (407)   | Brass           |
| 65-5- CDAF -XXX           | 1.5            | 0.015          | 3      | G1B (R3/4)    | 16  | 190    | 100          | 419 (407)   | Brass           |
| (65-5- CDCA -XXX)         | 1.5            | 0.015          | 3      | DN20          | 25  | 190    | 100          | 419 (407)   | Stainless steel |
| (65-5- CEAD -XXX)         | 2.5            | 0.025          | 5      | G1B (R3/4)    | 16  | 130    | 60           | 498 (-)     | Brass           |
| 65-5- CEAF -XXX           | 2.5            | 0.025          | 5      | G1B (R3/4)    | 16  | 190    | 60           | 498 (-)     | Brass           |
| 65-5- CECA -XXX           | 2.5            | 0.025          | 5      | DN20          | 25  | 190    | 60           | 498 (-)     | Stainless steel |
| 65-5- CGAG -XXX           | 3.5            | 0.035          | 7      | G5/4B (R1)    | 16  | 260    | 50           | 451 (436)   | Brass           |
| 65-5- CGCB -XXX           | 3.5            | 0.035          | 7      | DN25          | 25  | 260    | 50           | 451 (436)   | Stainless steel |
| 65-5- CHAG -XXX           | 6              | 0.06           | 12     | G5/4B (R1)    | 16  | 260    | 25           | 437 (438)   | Brass           |
| (65-5- CHAH -XXX)         | 6              | 0.06           | 12     | G11/2B (R5/4) | 16  | 260    | 25           | 437 (438)   | Brass           |
| 65-5- CHCB -XXX           | 6              | 0.06           | 12     | DN25          | 25  | 260    | 25           | 437 (438)   | Stainless steel |
| 65-5- CJAJ -XXX           | 10             | 0.1            | 20     | G2B (R1½)     | 16  | 300    | 15           | 478 (483)   | Brass           |
| (65-5- CJB2 -XXX)         | 10             | 0.1            | 20     | DN40          | 16  | 250    | 15           | 478 (483)   | Red brass       |
| 65-5- CJCD -XXX           | 10             | 0.1            | 20     | DN40          | 25  | 300    | 15           | 478 (483)   | Stainless steel |
| (65-5- CKC4 -XXX)         | 15             | 0.15           | 30     | DN50          | 25  | 250    | 10           | 420 (485)   | Stainless steel |
| 65-5- CKCE -XXX           | 15             | 0.15           | 30     | DN50          | 25  | 270    | 10           | 420 (485)   | Stainless steel |
| 65-5- CLCG -XXX           | 25             | 0.25           | 50     | DN65          | 25  | 300    | 6            | 479 (-)     | Stainless steel |
| 65-5- CMCH -XXX           | 40             | 0.4            | 80     | DN80          | 25  | 300    | 5            | 458 (486)   | Stainless steel |
| (65-5- CMCJ -XXX)         | 40             | 0.4            | 80     | DN80          | 25  | 350    | 5            | 458 (486)   | Stainless steel |
| 65-5- FACL -XXX           | 60             | 0,6            | 120    | DN100         | 25  | 360    | 2,5          | 470 (487)   | Stainless steel |
| (65-5- FAD5 -XXX)         | 60             | 0.6            | 120    | DN100         | 16  | 400    | 2.5          | 470 (487)   | Stainless steel |
| 65-5- FBCL -XXX           | 100            | 1              | 200    | DN100         | 25  | 360    | 1.5          | 480 (488)   | Stainless steel |
| 65-5- FBCM -XXX           | 100            | 1              | 200    | DN125         | 25  | 350    | 1.5          | 480 (488)   | Stainless steel |

<sup>3)</sup> XXX - code for final assembly, approvals etc. - determined by Kamstrup. A few variants may not be available in national approvals.

Table 3

<sup>(...)</sup> Country specific variants

#### 4.1 Accessories

|      |                               | Glands |          |          |
|------|-------------------------------|--------|----------|----------|
| Size | Nipple                        | Union  | Type no. | (2 pcs.) |
| DN15 | R <sup>1</sup> / <sub>2</sub> | G3/4   | -        | 6561-323 |
| DN20 | R <sup>3</sup> / <sub>4</sub> | G1     | -        | 6561-324 |
| DN25 | R1                            | G5/4   | 6561-325 | -        |
| DN32 | R5/4                          | G1½    | 6561-314 | -        |
| DN40 | R1½                           | G2     | 6561-315 | -        |

Table 4. Glands including gaskets (PN16).

| Gaskets for glands    |          |  |  |  |  |  |  |
|-----------------------|----------|--|--|--|--|--|--|
| Size (union) Type no. |          |  |  |  |  |  |  |
| G3/4                  | 2210-061 |  |  |  |  |  |  |
| G1                    | 2210-062 |  |  |  |  |  |  |
| G5/4                  | 2210-063 |  |  |  |  |  |  |
| G1½                   | 2210-064 |  |  |  |  |  |  |
| G2                    | 2210-065 |  |  |  |  |  |  |

| Gaskets for flange meters PN25 |          |  |  |  |  |  |  |
|--------------------------------|----------|--|--|--|--|--|--|
| Size Type no.                  |          |  |  |  |  |  |  |
| DN20                           | 2210-147 |  |  |  |  |  |  |
| DN25                           | 2210-133 |  |  |  |  |  |  |
| DN40                           | 2210-132 |  |  |  |  |  |  |
| DN50                           | 2210-099 |  |  |  |  |  |  |
| DN65                           | 2210-141 |  |  |  |  |  |  |
| DN80                           | 2210-140 |  |  |  |  |  |  |
| DN100                          | 1150-142 |  |  |  |  |  |  |
| DN125                          | 1150-153 |  |  |  |  |  |  |

Table 5. Gaskets.

#### 4.2 Pulse Transmitter

Type No. 66-99-603. The Pulse Transmitter is available with built-in supply for ULTRAFLOW<sup>®</sup>. The options are battery, 24 VAC or 230 VAC supply. Please specify when placing the order.

**Note:** Flow-info not possible.

#### 4.3 Pulse Divider

Type No. 66-99-607. The Pulse Divider is available with built-in supply for ULTRAFLOW<sup>®</sup>. The options are battery, 24 VAC or 230 VAC supply. Please specify when placing the order.

Note: Flow-info not possible.

The pulse division for Pulse Divider must also be specified when placing the order, see *Table 6*, *Table 7* and *Table 8* for possible pulse divisions.

| <b>ULTRAFLOW</b> ®       |                            |                        | Pulse Divider, pulselength 100 ms |                        |         |                        |         |                        |         |  |  |
|--------------------------|----------------------------|------------------------|-----------------------------------|------------------------|---------|------------------------|---------|------------------------|---------|--|--|
| q <sub>p</sub><br>[m³/h] | Meter factor<br>[Pulses/l] | Meter factor [l/Pulse] | Divider                           | Meter factor [l/Pulse] | Divider | Meter factor [l/Pulse] | Divider | Meter factor [l/Pulse] | Divider |  |  |
| 0.6                      | 300                        | 1                      | 300                               | 2.5                    | 750     |                        |         |                        |         |  |  |
| 1.5                      | 100                        | 1                      | 100                               | 2.5                    | 250     | 10                     | 1000    |                        |         |  |  |
| 2.5                      | 60                         | 1                      | 60                                | 2.5                    | 150     | 10                     | 600     |                        |         |  |  |
| 3.5                      | 50                         | 2.5                    | 125                               | 10                     | 500     | 25                     | 1250    |                        |         |  |  |
| 6                        | 25                         | 10                     | 250                               | 25                     | 625     |                        |         |                        |         |  |  |
| 10                       | 15                         | 10                     | 150                               | 25                     | 375     |                        |         |                        |         |  |  |
| 15                       | 10                         | 10                     | 100                               | 25                     | 250     | 100                    | 1000    | 250                    | 2500    |  |  |
| 25                       | 6                          | 10                     | 60                                | 25                     | 150     | 100                    | 600     | 250                    | 1500    |  |  |
| 40                       | 5                          | 25                     | 125                               | 100                    | 500     | 250                    | 1250    |                        |         |  |  |
| 60                       | 2.5                        | 100                    | 250                               | 250                    | 625     |                        |         |                        |         |  |  |
| 100                      | 1.5                        | 100                    | 150                               | 250                    | 375     |                        |         |                        |         |  |  |

Table 6. Pulse division (pulse duration 100 ms).

| ULTR                     | AFLOW <sup>®</sup>         | Pulse Divider, p          | ulselength 20 ms | Pulse Divider, pul        | lselength 50 ms |
|--------------------------|----------------------------|---------------------------|------------------|---------------------------|-----------------|
| q <sub>p</sub><br>[m³/h] | Meter factor<br>[Pulses/l] | Meter factor<br>[l/Pulse] | Divider          | Meter factor<br>[l/Pulse] | Divider         |
| 0.6                      | 300                        | 1                         | 300              | 1                         | 300             |
| 1.5                      | 100                        | 1                         | 100              | 1                         | 100             |
| 2.5                      | 60                         | 1                         | 60               | 1                         | 60              |
| 3.5                      | 50                         | 1                         | 50               | 1                         | 50              |
| 6                        | 25                         | 1                         | 25               | 1                         | 25              |
| 10                       | 15                         | 1                         | 15               | 1                         | 15              |
| 15                       | 10                         | 1                         | 10               | 10                        | 100             |
| 25                       | 6                          | 1                         | 6                | 10                        | 60              |
| 40                       | 5                          | 10                        | 50               | 10                        | 50              |
| 60                       | 2.5                        | 10                        | 25               | 10                        | 25              |
| 100                      | 1.5                        | 10                        | 15               | 10                        | 15              |

Table 7. Pulse division (pulse duration 20 ms and 50 ms).

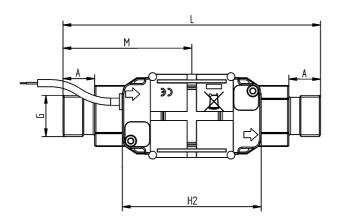

| ULTR                     | AFLOW <sup>®</sup>         | Pulse D<br>11EVL (pulse        |     | Pulse Divider &<br>11EVL (pulselength 100 ms) |         |  |
|--------------------------|----------------------------|--------------------------------|-----|-----------------------------------------------|---------|--|
| q <sub>p</sub><br>[m³/h] | Meter factor<br>[Pulses/l] | Meter factor Divider [l/Pulse] |     | Meter factor<br>[l/Pulse]                     | Divider |  |
| 0.6                      | 300                        | 1                              | 300 | 2.5                                           | 750     |  |
| 1.5                      | 100                        | 1                              | 100 | 2.5                                           | 250     |  |
| 2.5                      | 60                         | 1                              | 60  | 2.5                                           | 150     |  |
| 3.5                      | 50                         | 1                              | 50  | 2.5                                           | 125     |  |
| 6                        | 25                         | 1                              | 25  | 25                                            | 625     |  |
| 10                       | 15                         | 1                              | 15  | 25                                            | 375     |  |
| 15                       | 10                         | 10                             | 100 | 25                                            | 250     |  |
| 25                       | 6                          | 10                             | 60  | 25                                            | 150     |  |
| 40                       | 5                          | 10                             | 50  | 25                                            | 125     |  |
| 60                       | 2.5                        | 10                             | 25  | 250                                           | 625     |  |
| 100                      | 1.5                        | 10                             | 15  | 250                                           | 375     |  |

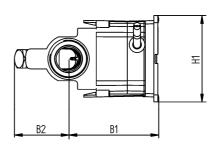
Table 8. Table on the use together with Kamstrup EVL.

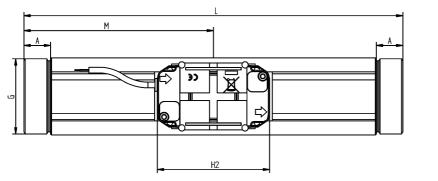
## 5 Dimensioned sketches

All measurements are in mm, unless otherwise stated.

ULTRAFLOW® 54, G3/4B and G1B







Figure 1

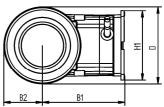
Thread ISO 228-1

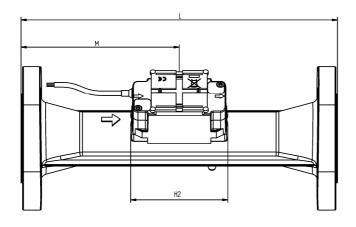
| Threads                         | L   | М   | H2 | A    | B1 | B2 | H1 | Approx.<br>weight<br>[kg] |
|---------------------------------|-----|-----|----|------|----|----|----|---------------------------|
| G3/4B                           | 110 | L/2 | 89 | 10.5 | 58 | 35 | 55 | 0.8                       |
| G1B                             | 110 | L/2 | 89 | 10.5 | 58 | 35 | 55 | 0.9                       |
| G1B<br>(q <sub>p</sub> 0.6;1.5) | 130 | L/2 | 89 | 20.5 | 58 | 35 | 55 | 1.1                       |
| G1B<br>(q <sub>p</sub> 2.5)     | 130 | L/2 | 89 | 20.5 | 58 | 35 | 55 | 0.9                       |
| G3/4B                           | 165 | L/2 | 89 | 20.5 | 58 | 35 | 55 | 1.2                       |
| G1B                             | 165 | L/2 | 89 | 20.5 | 58 | 35 | 55 | 1.2                       |
| G1B<br>(q <sub>p</sub> 0.6;1.5) | 190 | L/2 | 89 | 20.5 | 58 | 35 | 55 | 1.5                       |
| G1B<br>(q <sub>p</sub> 2.5)     | 190 | L/2 | 89 | 20.5 | 58 | 36 | 55 | 1.3                       |

Table 9

ULTRAFLOW<sup>®</sup> 54, G5/4B, G1½B and G2B







Figure 2

Thread ISO 228-1

| Threads | L   | М   | H2 | A  | B1 | B2 | H1 | D   | Approx.<br>weight<br>[kg] |
|---------|-----|-----|----|----|----|----|----|-----|---------------------------|
| G5/4B   | 260 | L/2 | 89 | 17 | 58 | 22 | 55 | ø43 | 2.3                       |
| G1½B    | 260 | L/2 | 89 | 30 | 58 | 37 | 55 | ø61 | 4.5                       |
| G2B     | 300 | L/2 | 89 | 21 | 65 | 31 | 55 | ø61 | 4.5                       |

Table 10

### ULTRAFLOW<sup>®</sup> 54, DN20 to DN50



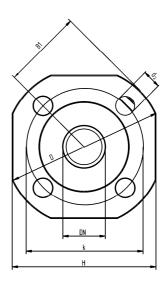



Figure 3

Flange EN 1092, PN25

| Nom.     |     |     |    |                                                                                                       |     |     |     | Bolts  |         |                | Approx.<br>weight |
|----------|-----|-----|----|-------------------------------------------------------------------------------------------------------|-----|-----|-----|--------|---------|----------------|-------------------|
| diameter | L   | M   | H2 | B1                                                                                                    | D   | Н   | k   | Number | Threads | $\mathbf{d_2}$ | [kg]              |
| DN20     | 190 | L/2 | 89 | 58                                                                                                    | 105 | 95  | 75  | 4      | M12     | 14             | 2.9               |
| DN25     | 260 | L/2 | 89 | 58                                                                                                    | 115 | 106 | 85  | 4      | M12     | 14             | 5.0               |
| DN40     | 250 | L/2 | 89 | <d 2<="" td=""><td>150</td><td>136</td><td>110</td><td>4</td><td>M16</td><td>18</td><td>7.9</td></d>  | 150 | 136 | 110 | 4      | M16     | 18             | 7.9               |
| DN40     | 300 | L/2 | 89 | <d 2<="" td=""><td>150</td><td>136</td><td>110</td><td>4</td><td>M16</td><td>18</td><td>8.3</td></d>  | 150 | 136 | 110 | 4      | M16     | 18             | 8.3               |
| DN50     | 250 | 155 | 89 | <d 2<="" td=""><td>165</td><td>145</td><td>125</td><td>4</td><td>M16</td><td>18</td><td>9.8</td></d>  | 165 | 145 | 125 | 4      | M16     | 18             | 9.8               |
| DN50     | 270 | 155 | 89 | <d 2<="" td=""><td>165</td><td>145</td><td>125</td><td>4</td><td>M16</td><td>18</td><td>10.1</td></d> | 165 | 145 | 125 | 4      | M16     | 18             | 10.1              |

Table 11

ULTRAFLOW® 54, DN65 to DN125

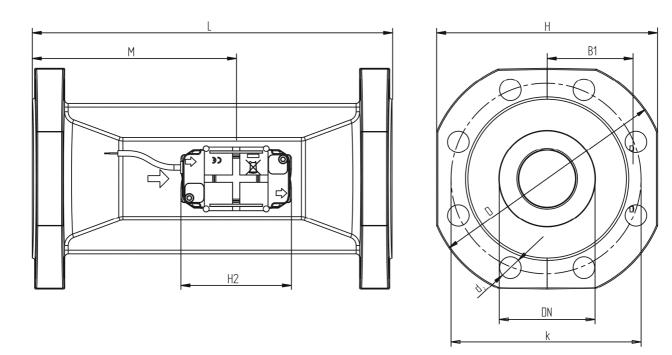



Figure 4

Flange EN 1092, PN25

| Nom.     |     |     |    |                                                                                                       |     |     |     | Bolts  |         | Approx.<br>weight |      |
|----------|-----|-----|----|-------------------------------------------------------------------------------------------------------|-----|-----|-----|--------|---------|-------------------|------|
| Diameter | L   | M   | H2 | B1                                                                                                    | D   | Н   | k   | Number | Threads | $\mathbf{d_2}$    | [kg] |
| DN65     | 300 | 170 | 89 | <h 2<="" td=""><td>185</td><td>168</td><td>145</td><td>8</td><td>M16</td><td>18</td><td>13.2</td></h> | 185 | 168 | 145 | 8      | M16     | 18                | 13.2 |
| DN80     | 300 | 170 | 89 | <h 2<="" td=""><td>200</td><td>184</td><td>160</td><td>8</td><td>M16</td><td>18</td><td>16.8</td></h> | 200 | 184 | 160 | 8      | M16     | 18                | 16.8 |
| DN80     | 350 | 170 | 89 | <h 2<="" td=""><td>200</td><td>184</td><td>160</td><td>8</td><td>M16</td><td>18</td><td>18.6</td></h> | 200 | 184 | 160 | 8      | M16     | 18                | 18.6 |
| DN100    | 360 | 210 | 89 | <h 2<="" td=""><td>235</td><td>220</td><td>190</td><td>8</td><td>M20</td><td>22</td><td>21.7</td></h> | 235 | 220 | 190 | 8      | M20     | 22                | 21.7 |
| DN100    | 400 | 210 | 89 | <h 2<="" td=""><td>220</td><td>210</td><td>180</td><td>8</td><td>M16</td><td>18</td><td>22.8</td></h> | 220 | 210 | 180 | 8      | M16     | 18                | 22.8 |
| DN125    | 350 | 212 | 89 | <h 2<="" td=""><td>270</td><td>260</td><td>220</td><td>8</td><td>M24</td><td>28</td><td>28.2</td></h> | 270 | 260 | 220 | 8      | M24     | 28                | 28.2 |

Table 12

## **6** Pressure loss

The pressure loss in a flow sensor is stated as the max. pressure loss at  $q_p$ . According to EN 1434 the max. pressure loss must not exceed 0.25 bar, unless the energy meter includes a flow controller or functions as pressure reducing equipment.

The pressure loss in a sensor increases with the square of the flow and can be stated as:

$$Q = kv \times \sqrt{\Delta p}$$

where:

Q =volume flow rate [m<sup>3</sup>/h]

kv=volume flow rate at 1 bar pressure loss

 $\Delta p$ =pressure loss [bar]

| Graph | q <sub>p</sub><br>[m³/h] | Nom. diameter<br>[mm] | kv   | Q@0.25 bar<br>[m³/h] |
|-------|--------------------------|-----------------------|------|----------------------|
| Α     | 0.6 & 1.5                | DN15 & DN20           | 3.2  | 1.6                  |
| В     | 2.5 & 3.5 & 6            | DN20, DN25 & DN32     | 13.4 | 6.7                  |
| С     | 10 & 15                  | DN40 & DN50           | 40   | 20                   |
| D     | 25                       | DN65                  | 102  | 51                   |
| E     | 40                       | DN80                  | 179  | 90                   |
| F     | 60 & 100                 | DN100                 | 373  | 187                  |
| G     | 100                      | DN125                 | 316  | 158                  |

Table 13. Pressure loss table.



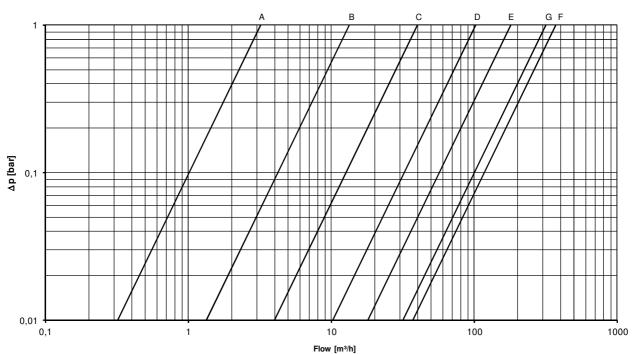



Diagram 1. Pressure loss chart.

## 7 Installation

Prior to installation of the flow sensor, the system should be flushed and protection plugs/plastic diaphragms removed from the flow sensor.

Correct position of the flow sensor (flow or return) appears from the front label of MULTICAL<sup>®</sup>. The flow direction is indicated by an arrow on the side of the flow sensor.

Glands and gaskets are mounted as shown in the drawings overleaf.

Pressure stage of ULTRAFLOW® 54: PN16/PN25, see marking. Flow sensor marking does not cover included accessories.

Temperature of medium, ULTRAFLOW<sup>®</sup> 54: 15...130°C/15...90°C, see marking.

Mechanical environment: M1 (fixed installation with minimum vibration).

Electromagnetic environment: E1 and E2 (housing/light industry). The meter's control cables must be drawn at min. 25 cm distance from other installations.

Climatic environment: Installation must take place in environments with non-condensing humidity as well as in closed locations (indoors).

The ambient temperature must be within 5...55°C.

Maintenance and repair: The flow sensor is verified separately and can, therefore, be separated from the calculator. Battery for replacement: Kamstrup type 66-00-200-100. Other repairs require subsequent reverification in an accredited laboratory.

ULTRAFLOW® can only be connected direct to Kamstrup's calculators on terminals 11-9-10, as shown in *paragraph* 7.6. Connection to other types of calculators requires the use of a Pulse Transmitter.

Note: Please make sure that "pulse/litres" is identical on flow meter and calculator

At medium temperatures above 90°C use of flange meters is recommended. Additionally, MULTICAL® calculator or Pulse Transmitter should be wall-mounted.

In order to prevent cavitation the back pressure at ULTRAFLOW® must be min. 1.5 bar at  $q_p$  and min. 2.5 bar at  $q_s$ . This applies to temperatures up to approx. 80°C.

ULTRAFLOW® must not be exposed to pressure lower than the ambient pressure (vacuum).

When the installation has been completed, water flow can be turned on. The valve on the inlet side must be opened first.

## 7.1 Installation angle for ULTRAFLOW® 54

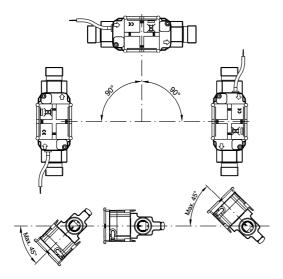



Figure 5

 $\textsc{ULTRAFLOW}^{\circledcirc}$  54 may be installed horizontally, vertically, or at an angle.

#### Important!

For ULTRAFLOW<sup>®</sup> 54 the electronics/plastic case must be placed on the side (when installed horizontally).

 $ULTRAFLOW^{\scriptsize @}$  54 may be turned up to  $\pm 45^{\scriptsize o}$  in relation to the pipe axis.

### 7.2 Straight inlet

ULTRAFLOW® 54 requires neither straight inlet nor straight outlet to meet the Measuring Instruments Directive (MID) 2004/22/ EC, OIML R75:2002 and EN 1434:2007. A straight inlet section will only be necessary in case of heavy flow disturbances before the meter. We recommend following the guidelines of CEN CR 13582.

Optimal position can be obtained if you take the below-mentioned installation methods into consideration:

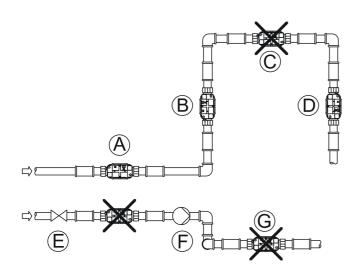



Figure 6

- A Recommended position of flow meter
- **B** Recommended position of flow meter
- C Unacceptable position due to risk of air build-up
- **D** Acceptable in closed systems. Unacceptable position in open systems due to risk of air build-up.
- **E** A flow meter ought not to be placed immediately after a valve, except from closing valves (ball check valve type), which must be completely open when not used for closing
- **F** Never place a flow meter on the inlet side of a pump
- **G** A flow meter ought not to be placed after a double bend, in two levels

For general information concerning installation see CEN report *DS/CEN/CR 13582*, *Heat meter Installation. Instructions in selection, installation and use of heat meters.* 

## 7.3 Operating pressure

In order to prevent cavitation the back pressure at ULTRAFLOW<sup>®</sup> must be min. 1.5 bar at  $q_p$  and min. 2.5 bar at  $q_s$ . This applies to temperatures up to approx. 80°C. ULTRAFLOW<sup>®</sup> must not be exposed to pressure lower than the ambient pressure (vacuum). For further information on operating pressure, see *paragraph 8.7 Guidelines for dimensioning ULTRAFLOW*<sup>®</sup>

## 7.4 Humidity and condensation

If ULTRAFLOW® is installed in moist environments, it must be turned 45° compared to the pipe axis as shown in the drawing below.



Figure 7

### 7.5 Installation examples

Gland meter with MULTICAL®/Pulse Transmitter fitted on ULTRAFLOW®.

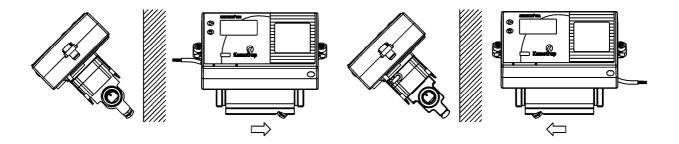



Figure 8

Glands and short direct sensor fitted into ULTRAFLOW® (only G3/4B (R1/2) and G1B (R3/4)).

The short direct sensor from Kamstrup can only be mounted in PN16 installations. The blind plug mounted in the ULTRAFLOW® flow part can be used in connection with both PN16 and PN25.

The flow meter can be used in both PN16 and PN25 and can be supplied marked either PN16 or PN25 as desired. Possibly supplied glands can only be used for PN16. For PN25 installations shall be used suitable PN25 glands.

In connection with  $G^3/4Bx110$  mm and G1Bx110 mm, it shall be checked that 10 mm thread run-out is sufficient. See *Figure 9* below.

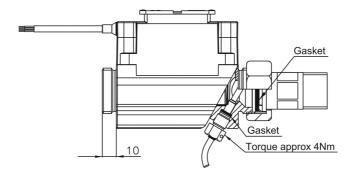



Figure 9

Flange meter with MULTICAL®/Pulse Transmitter fitted on ULTRAFLOW®

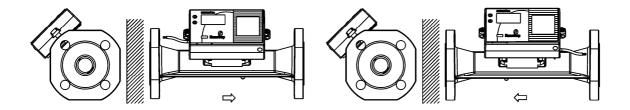



Figure 10

## 7.6 Electrical connection

| <b>ULTRAFLOW</b> ®  | $\rightarrow$ | MULTICAL <sup>®</sup> |
|---------------------|---------------|-----------------------|
| Blue (ground)/11A   | $\rightarrow$ | 11                    |
| Red (supply)/9A     | $\rightarrow$ | 9                     |
| Yellow (signal)/10A | $\rightarrow$ | 10                    |

Table 14. Connecting ULTRAFLOW® and MULTICAL®.

| 3.65 VDC Supply 5) | $\rightarrow$ | Pulse Transmitter/ Pulse<br>Divider |
|--------------------|---------------|-------------------------------------|
| Red (+)            | $\rightarrow$ | 60                                  |
| Black (-)          | $\rightarrow$ | 61                                  |

<sup>5)</sup> From battery or supply module

Table 15. Connection of supply in Pulse Transmitter/Pulse Divider.

| ULTRAFLOW <sup>®</sup> | $\rightarrow$ |    | mitter/ Pulse<br>vider | $\rightarrow$ | MULTICAL® |
|------------------------|---------------|----|------------------------|---------------|-----------|
|                        |               | In | Out                    |               |           |
| Blue (ground)/11A      | $\rightarrow$ | 11 | 11A                    | $\rightarrow$ | 11        |
| Red (supply)/9A        | $\rightarrow$ | 9  | 9A                     | $\rightarrow$ | 9         |
| Yellow (signal)/10A    | <b>→</b>      | 10 | 10A                    | <b>→</b>      | 10        |

Table 16. Connecting via Pulse Transmitter/Pulse Divider.

Please note that use of long signal cables requires thoughtfulness in connection with installation. There must be a distance of **min.** 25 cm between signal cables and all other cables to prevent electrical disturbance.

## 7.7 Example of connecting ULTRAFLOW® and MULTICAL®

ULTRAFLOW® 54

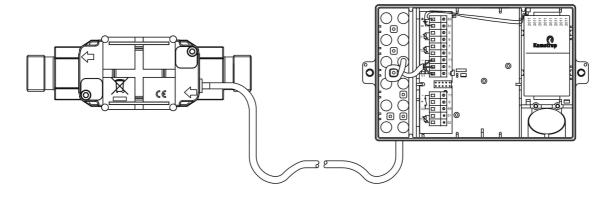



Figure 11

#### 7.8 Calculator with two flow sensors

MULTICAL® 602 can be used in various applications with two flow sensors, e.g. leak surveillance or open systems. When two ULTRAFLOW® are direct connected to one MULTICAL® 602, a close electric coupling between the two pipes ought to be carried out as a main rule. If the two pipes are installed in a heat exchanger, close to the flow sensors, however, the heat exchanger will provide the necessary electric coupling.

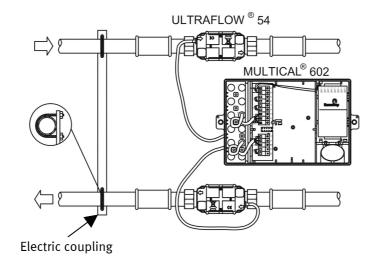



Figure 12

- Forward and return pipes are closely electrically coupled
- No welded joints occur

In installations where the electric coupling cannot be carried out, or where welding in the pipe system can occur, the cable from one ULTRAFLOW® must be routed through a Pulse Transmitter with galvanic separation before the cable enters MULTICAL® 602.

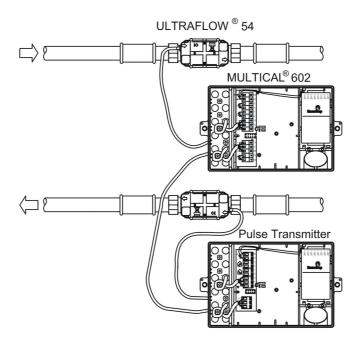



Figure 13

- Forward and return pipes are not necessarily closely coupled
- Electric welding \*) can occur

<sup>\*)</sup> Electric welding must always be carried out with the earth pole closest to the welding point. Damage to meters due to welding is **not** comprised by our factory guarantee.

## 8 Functional description

## 8.1 Ultrasound combined with piezo ceramics

Flow sensor manufacturers have been working on alternative techniques to replace the mechanical principle. Research and development at Kamstrup has proved that ultrasonic measuring is the most viable solution. Combined with microprocessor technology and piezo ceramics, ultrasonic measuring is not only accurate but also reliable.

### 8.2 Principles

The thickness of a piezo ceramic element changes when exposed to an electric field (voltage). When the element is influenced mechanically, a corresponding electric charge is generated. In this way the piezo ceramic element can function either as a sender or a receiver or both.

Within ultrasonic flow measuring there are two main principles: the transit time method and the Doppler method.

The Doppler method is based on the frequency shifting which is generated when sound is reflected by a moving particle. This is very similar to the effect you experience when a car drives by. The sound (the frequency) decreases when the car passes by.

#### 8.3 Transient time method

The transient time method used in ULTRAFLOW® utilizes the fact that it takes an ultrasonic signal emitted in the opposite direction of the flow longer time to travel from sender to receiver than a signal sent in the same direction as the flow.

The transient time difference of a flow sensor is very small (nanoseconds). Therefore, the time difference is measured as a phase difference between the two 1 MHz sound signals to obtain the necessary accuracy.

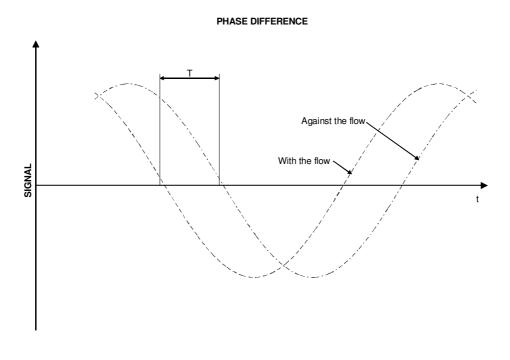



Diagram 2

In principle, flow is determined by measuring the flow velocity and multiplying it by the area of the measuring pipe:

$$Q = F \times A$$

where:

Q is the flow

F is the flow velocity

A Is the area of the measuring pipe

The area and the length, which the signal travels in the sensor, are well-known factors. The length which the signal travels can be expressed as  $L = T \times V$ , which can also be written as:

$$T = \frac{L}{V}$$

where:

L is the measuring distance

V is the sound propagation velocity

T is the time

The time can be expressed as the difference between the signal sent with the flow and the signal sent against the flow.

$$\Delta T = L \times \left(\frac{1}{V_1} - \frac{1}{V_2}\right)$$

In connection with ultrasonic flow sensors the velocities  $V_1$  and  $V_2$  can be stated as:

$$V_1 = C - F$$
 And  $V_2 = C + F$  respectively

where:

C is the velocity of sound in water

Using the above formula you get:

$$\Delta T = L \times \frac{1}{C - F} - \frac{1}{C + F}$$

which can also be written as:

$$\Delta T = L \times \frac{(C+F) - (C-F)}{(C-F) \times (C+F)}$$

 $\parallel$ 

$$\Delta T = L \times \frac{2F}{C^2 - F^2}$$

As  $C \rangle \rangle F$  ,  $F^2$  can be omitted and the formula reduced as follows:

$$F = \frac{\Delta T \times C^2}{L \times 2}$$

To minimize the influence from variations of the velocity of sound in water it is measured. The velocity of sound in water is measured by means of the built-in ASIC. For this purpose a number of absolute time measurements between the two transducers are made. These measurements are subsequently converted into the current velocity of sound, which is used in connection with flow calculations.

### 8.4 Signal paths



 $q_p 0.6...1.5 \text{ m}^3/\text{h}$ 

#### Parallel

The sound path is parallel to the measuring pipe and sound is sent from the transducers via reflectors.

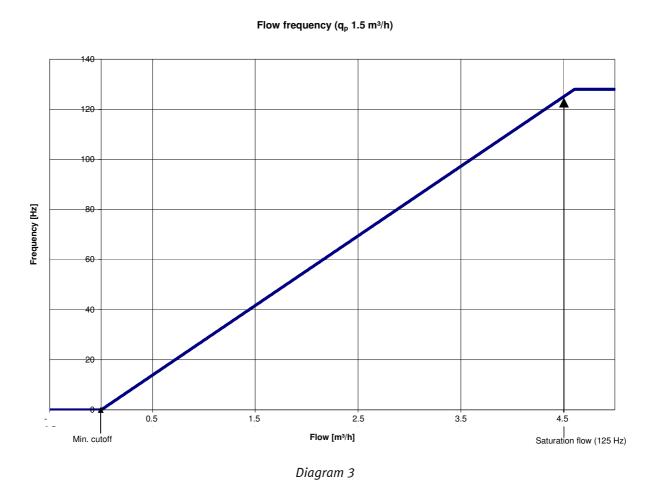


q<sub>p</sub> 2.5...100 m<sup>3</sup>/h

#### Triangle

The sound path covers the measuring pipe in a triangle and sound is sent from the transducers round the measuring pipe via reflectors.

### 8.5 Measuring sequences


During flow measuring ULTRAFLOW® passes through a number of sequences, which are repeated at fixed intervals. Deviations only occur when the meter is in test mode and connecting the supply during initialization/start-up.

The difference between the main routines in normal and verification mode is the frequency of the measurements, on which pulse emission is based.

It may take up to 16 seconds to obtain correct function after a power cut.

#### 8.6 Function

In the meter's working area from min. cut-off to saturation flow there is a linear connection between the water volume flowing through and the number of pulses being emitted. An example of the connection between flow and pulse frequency for ULTRAFLOW $^{\circ}$  q $_{\rm p}$  1.5 m $^{3}$ /h is shown below (*Diagram 3*).



If the flow is lower than min. cut-off or negative, ULTRAFLOW® emits no pulses.

At flows above the flow corresponding to pulse emission at a max. pulse frequency of 128 Hz, the max. pulse frequency will be maintained. *Table 17* overleaf shows the flow at max. pulse frequency 128 Hz for the various flow sizes/pulse figures.

| $q_p$               | Meter factor | Flow at 128 Hz |
|---------------------|--------------|----------------|
| [m <sup>3</sup> /h] | [imp/l]      | [m³/h]         |
| 0.6                 | 300          | 1.54           |
| 1.5                 | 100          | 4.61           |
| 2.5                 | 60           | 7.68           |
| 3.5                 | 50           | 9.22           |
| 6                   | 25           | 18.4           |
| 10                  | 15           | 30.7           |
| 15                  | 10           | 46.1           |
| 25                  | 6            | 76.8           |
| 40                  | 5            | 92.2           |
| 60                  | 2.5          | 184.3          |
| 100                 | 1.5          | 307.2          |

Table 17. Flow at max. pulse frequency (128 Hz).

According to DS/EN 1434 the upper flow limit  $q_s$  is the highest flow at which the flow sensor may operate for short periods of time (<1h/day, <200h/year) without exceeding max. permissible errors. ULTRAFLOW® has no functional limitations during the period when the meter operates above  $q_p$ . However, please note that high flow velocities may cause cavitation, especially at low static pressure.

## 8.7 Guidelines for dimensioning ULTRAFLOW®

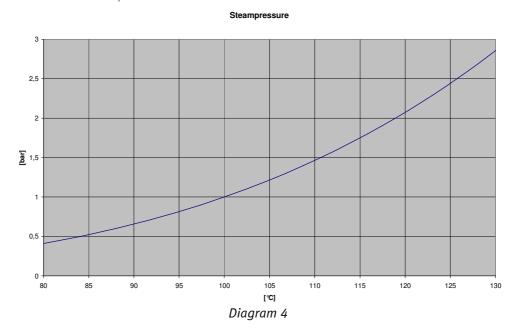
In connection with installations it has proved to be practical to work with larger pressures than the ones stated below:

| Nominal flow q <sub>p</sub> | Recommended   | Max. flow q <sub>s</sub> | Recommended   |
|-----------------------------|---------------|--------------------------|---------------|
|                             | back pressure |                          | back pressure |
| [m³/h]                      | [bar]         | [m³/h]                   | [bar]         |
| 0.6                         | 1             | 1.2                      | 2             |
| 1.5                         | 1.5           | 3                        | 2.5           |
| 2.5                         | 1             | 5                        | 2             |
| 3.5                         | 1             | 7                        | 2             |
| 6                           | 1.5           | 12                       | 2.5           |
| 10                          | 1             | 20                       | 2             |
| 15                          | 1.5           | 30                       | 2.5           |
| 25                          | 1             | 50                       | 2             |
| 40                          | 1.5           | 80                       | 2.5           |
| 60                          | 1             | 120                      | 2             |
| 100                         | 1.5           | 200                      | 2.5           |

Table 18

The purpose of recommended back pressure is to avoid measuring errors as a result of cavitation or air in the water.

It is not necessarily cavitation in the flow sensor itself, but also bubbles from cavitating pumps or regulating valves mounted before the sensor. It can take some time for these bubbles to dissolve in the water.


In addition, the water may contain air, which is dissolved in the water. The amount of air which can be dissolved in water depends on the pressure and the temperature. This means that air bubbles can be formed because of a drop of pressure e.g. due to an absolute speed rise in a contraction or over the meter.

The risk of these factors affecting accuracy is reduced by maintaining a fair pressure in the installation.

In relation to above table, the steam pressure at current temperature must also be considered. *Table 18* applies to temperatures up to approx. 80°C. Furthermore, it must be considered that the above-mentioned pressure is the back pressure at the sensor and that the pressure is lower <u>after</u> a contraction than <u>before</u> one (e.g. cones). This means that the pressure – when measured elsewhere - might be different from the pressure at the sensor.

This can be explained by combining the continuity equation and Bernoulli's equation. The total energy from the flow will be identical at any cross section. It can be reduced to:  $P + \frac{1}{2}\rho v^2 = constant$ .

When dimensioning the flow sensor, this must be taken into consideration, especially if the sensor is used within the scope of EN 1434 between  $q_p$  and  $q_s$ , and in case of heavy contractions of the pipe.



## 8.8 Pulse output

ULTRAFLOW® 54

Type Push-Pull Output impedance  $\sim 10 \text{ k}\Omega$  Pulse duration 2...5 ms

Pause Depending on current pulse frequency

See also block diagram below.

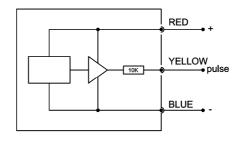



Figure 14. Block diagram ULTRAFLOW®.

## 8.9 Pulse Transmitter/Pulse Divider

Type Open collector. Can be connected as two-wire or as three-wire by means

of the integral pull-up resistance of 33  $k\Omega$ 

Output impedance  $\sim 2 \text{ k}\Omega$  I<sub>max</sub> 0.2 mA

Supply (9A) 3...10 VDC
Pulse duration 2...5 ms

(Pulse Transmitter)

Pulse duration 100 ms (standard) (Pulse Divider)

Pause Depending on the actual pulse frequency

**Note:** Flow-info not possible. See also block diagram below.

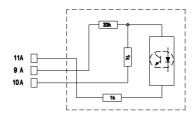



Figure 15. Block diagram Pulse Transmitter/Pulse Divider (standard configuration).

#### 8.10 Pulse emission

Pulses are emitted at intervals of 1 sec. The number of pulses to be emitted is calculated every second. Pulses are emitted in bursts with a pulse duration of 2...5 ms and pauses depending on the current pulse frequency. The duration of the pauses between the individual bursts is approx. 30 ms.

The transmitted pulse signal is the average determination of a series of flow measurements. This means that during start-up there will be a transient phenomenon until correct flow signal has been obtained. Furthermore, this brings about a pulse tail of up to 8 s. in case of sudden hold.

## 8.11 Accuracy

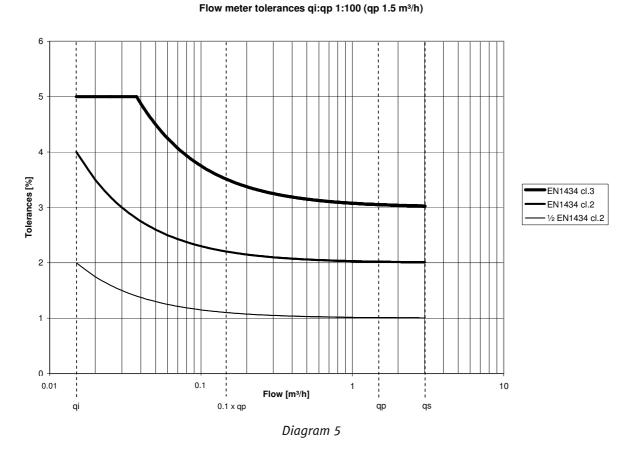
ULTRAFLOW® 54 is a volume flow sensor specially developed for use with heat meters according to DS/EN 1434. Permitted tolerances in DS/EN 1434 for flow sensors with a dynamic range of 1:100  $(q_i:q_p)$  are shown in the diagram below. The tolerances are defined for classes 2 and 3 with following formulas:

Class 2: 
$$2 + 0.02 \times \frac{q_p}{q}$$
 but max. 5 %

Class 3: 
$$3 + 0.05 \times \frac{q_p}{q}$$
 but max. 5%

DS/EN 1434 defines following dynamic ranges (q<sub>i</sub>:q<sub>n</sub>): 1:10, 1:25, 1:50, 1:100 and 1:250.

In connection with accuracies the range from  $q_p$  to  $q_s$  is defined as max. flow short-term, where tolerances are adhered to. There are no requirements as to the relationship between  $q_p$  and  $q_s$ . See *Table 1* for information on  $q_s$  for ULTRAFLOW<sup>®</sup>.


To ensure that the sensors meet the tolerance requirements, DS/EN 1434-5 specifies calibration requirements in connection with verification of sensors. The requirements for flow sensors are that they have to be tested at following 3 points:

$$q_{i}$$
...1.1 x  $q_{i}$ , 0.1 x  $q_{p}$ ...0.11 x  $q_{p}$  and 0.9 x  $q_{p}$ ... $q_{p}$ 

During testing the water temperature must be 50°C ±5°C.

Further requirements are that the tolerance of the equipment used to perform the test must be less than 1/5 MPE (Max. Permissible Error) in order for the acceptance limit to be equal to MPE. If the equipment does not meet this standard, the acceptance limit must be reduced by the tolerance of the equipment.

ULTRAFLOW<sup>®</sup> 54 will typically do better than half of the permitted tolerance according to DS/EN 1434 cl. 2.



## 8.12 Power consumption

The power consumption of ULTRAFLOW® is as follows:

Max. average 50 μA

Max. current 7 mA (max. 40 ms)

## 8.13 Interface plug/serial data

ULTRAFLOW<sup>®</sup> 54 is fitted with a four-pole plug under the cover. Thus, it is not possible to access this plug without breaking the seal. On delivery, the cover will be sealed with a factory seal and in connection with verified sensors it will be a laboratory seal (legal seal).

The plug is used for:

- Programming meters, including adjusting the correction graph by means of METERTOOL
- Setting the sensor to test mode
- Reading accumulated water quantity in connection with calibration
- External control of start/stop in connection with calibration

The interface plug is built up as Figure 16.

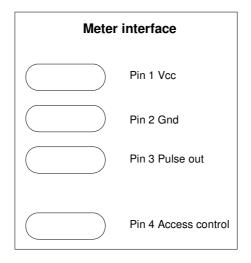



Figure 16. Interface plug.

#### 8.14 Test mode

To minimize the time spent on calibration, ULTRAFLOW<sup>®</sup> 54 can be switched into test mode. In test mode (verification mode) the measuring routines only take one fourth of the time they take in normal mode.

ULTRAFLOW<sup>®</sup> 54 is put into test mode by connecting pin 4 of the internal connector to frame (*Figure 16*) and subsequently connect the supply. After approx. 1 sec. the sensor goes into test mode and the connection between pin 4 and frame is disconnected.

Test mode is ended by disconnecting the supply to the sensor.

Note: An ULTRAFLOW<sup>®</sup> 54 in test mode uses approx. 3 times as much power as in normal mode. However, this does not influence the total battery lifetime of the energy meter.

## 8.15 Externally controlled start/stop

In connection with calibration by means of serial data, e.g. in connection with NOWA, ULTRAFLOW<sup>®</sup> 54 can be monitored by an external signal when it is in verification mode (see *paragraph 8.14*). This is done by grounding pin 4 of the internal connector when starting the test and removing it when the test has been completed. The volume of water that has been accumulated during the test can be read serially.

The accumulation is based on the same data as those used for calculating the number of pulses to be emitted.

In addition to accumulating water volume during test, the sensor corrects for the excess quantity measured in connection with start as well as the quantity lacking in connection with stop. These deviations occur because the sensor measures flow at regular intervals, as illustrated in *Figure 17* below.

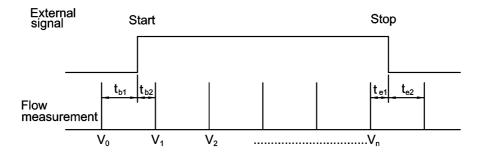



Figure 17

The excess water quantity in connection with start is the water volume that runs through the sensor during the time  $t_{b1}$  before the first accumulation  $V_1$  within the test period. In the same way the water quantity for the period  $t_{e1}$  from the last accumulation  $V_n$  until end of test is added.

The volume accumulated during the test can be stated as:

$$\sum \frac{V_1 \times t_{b2}}{t_{b1} + t_{b2}} + V_2 \dots + V_n + \frac{V_n \times t_{e1}}{t_{e1} + t_{e2}}$$

# 8.16 Course of calibration by means of serial data and externally controlled start/stop

The routine for calibrating ULTRAFLOW® 54 using serial data is outlined below.

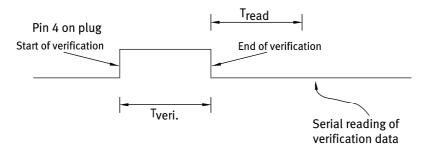



Figure 18

The sensor must be in test mode (verification mode).

Calibration is started by connecting the 4<sup>th</sup> pin of the internal plug (see *Figure 18*), simultaneously with starting the test. E.g. this might take place at the same time as the master meter is started or at the same time as the diverter to the weight is being changed. ULTRAFLOW® accumulates the water volume until you disconnect pin 4 and terminate the test. Subsequently, the volume accumulated during the test can be read with respect to start and stop. From the test has been completed until the accumulated quantity of water can be read, min. 2 sec. must pass (Tread). No communication must take place with ULTRAFLOW® during testing.

Pulse emission stops when pin 4 is disconnected. The read water quantity and the number of emitted pulses may differ as the pulse emission is controlled at intervals of 1 s.

# 9 Calibrating ULTRAFLOW®

Calibration can be based on:

- Pulses in standard mode
- Pulses in test mode
- Pulses using PULSE TESTER type 66-99-279
- Serial data with the meter in test mode (e.g. used in connection with NOWA)

## 9.1 Installation

The installation angle must be taken into account installing ULTRAFLOW<sup>®</sup> 54. See the restrictions in *paragraph 7 Installation*. See *paragraph 10.1 Optimization in connection with calibration*.

# 9.2 Technical data for ULTRAFLOW®

| $q_p$               | Meter factor | Flow at 128 Hz |
|---------------------|--------------|----------------|
| [m <sup>3</sup> /h] | [imp/l]      | [m³/h]         |
| 0,6                 | 300          | 1,54           |
| 1,5                 | 100          | 4,61           |
| 2,5                 | 60           | 7,68           |
| 3,5                 | 50           | 9,22           |
| 6                   | 25           | 18,4           |
| 10                  | 15           | 30,7           |
| 15                  | 10           | 46,1           |
| 25                  | 6            | 76,8           |
| 40                  | 5            | 92,2           |
| 60                  | 2,5          | 184,3          |
| 100                 | 1,5          | 307,2          |

Table 19. Output signal.

## Output ULTRAFLOW® 54

Type Push-Pull Output impedance  $\sim 10 \text{ k}\Omega$  Pulse duration 2...5 ms

Pause Depending on current pulse frequency

See also block diagram next page.

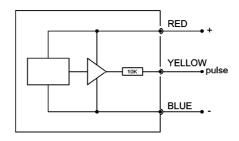



Figure 19. Block diagram ULTRAFLOW®.

## Connection via three-wire cable

Yellow Signal
Red Supply
Blue Ground

Supply  $3.6 \text{ VDC} \pm 0.1 \text{ V}$ 

## Output when using Pulse Transmitter

Type Open collector. Can be connected as two-wire or three-wire via the built-in pull-up

resistance of 33 k $\Omega$ .

 $\begin{array}{ll} \text{Output impedance} & ~2~\text{k}\Omega \\ \\ \text{I}_{\text{max}} & \text{0.2 mA} \\ \\ \text{Supply (9A)} & \text{3...10 VDC} \\ \\ \text{Pulse duration} & \text{2...5 ms} \\ \end{array}$ 

Pause Depending on the actual pulse frequency.

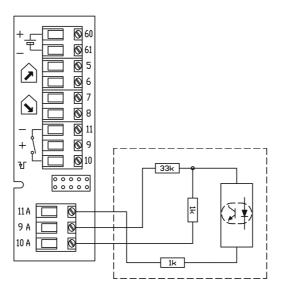



Figure 20. Block diagram Pulse Transmitter.

# 9.3 Start-up

16 seconds must elapse from start-up to calibration in order to allow a true reading to be reached.

# 9.4 Measuring flow

To obtain correct flow measurement, the duration of calibration must be min. 2 minutes.

## 9.5 Evacuation

ULTRAFLOW® must NOT be evacuated (subjected to vacuum).

# 9.6 Suggested test points

| Nom. flow | Meter factor |        | Гest poir | nt        | Te    | st durati | on                 | Tes   | st quanti | ties      |
|-----------|--------------|--------|-----------|-----------|-------|-----------|--------------------|-------|-----------|-----------|
| $q_p$     |              | $q_p$  | $q_i$     | $0.1xq_p$ | $q_p$ | $q_i$     | 0.1xq <sub>p</sub> | $q_p$ | $q_{i}$   | $0.1xq_p$ |
| [m³/h]    | [impulses/l] | [m³/h] | [m³/h]    | [m³/h]    | [min] | [min]     | [min]              | [kg]  | [kg]      | [kg]      |
| 0.6       | 300          | 0.6    | 0.006     | 0.06      | 3     | 20        | 6                  | 30    | 2         | 6         |
| 1.5       | 100          | 1.5    | 0.015     | 0.15      | 3     | 20        | 4                  | 75    | 5         | 10        |
| 2.5       | 60           | 2.5    | 0.025     | 0.25      | 3     | 20.2      | 4.8                | 125   | 8.4       | 20        |
| 3.5       | 50           | 3.5    | 0.035     | 0.35      | 3     | 17.1      | 6                  | 175   | 10        | 35        |
| 6         | 25           | 6      | 0.06      | 0.6       | 3     | 20        | 4                  | 300   | 20        | 40        |
| 10        | 15           | 10     | 0,1       | 1         | 3     | 20.4      | 6                  | 500   | 34        | 100       |
| 15        | 10           | 15     | 0.15      | 1.5       | 3     | 20        | 6                  | 750   | 50        | 150       |
| 25        | 6            | 25     | 0.25      | 2.5       | 3     | 20.2      | 6                  | 1250  | 84        | 250       |
| 40        | 5            | 40     | 0.4       | 4         | 3     | 15        | 6                  | 2000  | 100       | 400       |
| 60        | 2.5          | 60     | 0.6       | 6         | 3     | 20        | 6                  | 3000  | 200       | 600       |
| 100       | 1.5          | 100    | 1         | 10        | 3     | 20        | 6                  | 5000  | 333       | 1000      |

*Table 20. Table showing ULTRAFLOW® including suggested test points, test durations, and test quantities.* 

The suggested test parameters are based on EN 1434-5 and  $q_i$ : $q_p$  1:100.

The test set-ups have been selected on the basis of the following requirements:

Min. test duration of 3 minutes

Water volumes of  $q_i$  and  $0.1xq_p$  of min. 10% of the water volume per hour

Water volume of 0.1xq<sub>p</sub> corresponding to min. 1000 pulses

Water volume of  $q_i$  corresponding to min. 500 pulses

These suggested test points can be optimized for each rig as well as for the test purpose.

# 10 Sealing

ULTRAFLOW® is sealed from the factory. If the sensor is verified, it will be supplied with laboratory marks and a year mark as shown in *Figure 21*.

If the seal of a verified sensor is broken, the sensor must be verified before being installed in a location demanding verification.

Below sealing is shown on:

ULTRAFLOW® 54

**Pulse Transmitter** 

On the drawings the sealing is divided into following groups:

- H Verification year
- E Laboratory mark/seal
- B Installation seal

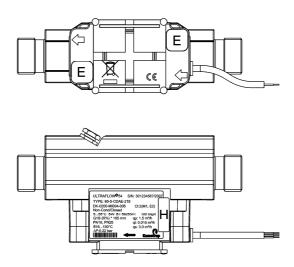



Figure 21. Sealing of ULTRAFLOW® 54.

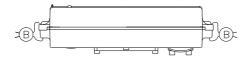



Figure 22. Sealing of Pulse Transmitter.

**Note!** Sealing requirements may vary as a consequence of national regulations.

# 10.1 Optimization in connection with calibration

To make a rational test of ULTRAFLOW® it must be possible to reproduce test results. This is also very important if the sensors tested are to be adjusted.

Experience shows that ULTRAFLOW® operates with standard deviations of 0.3...0.4% at  $q_i$  and 0.2...0.3% at  $q_p$ . This is standard deviations at 300...500 pulses at  $q_i$ , 3000...5000 at  $q_p$ , and flying start/stop.

In connection with optimization of calibration the following aspects should be taken into account:

**Pressure:** Optimal working pressure is 4...6 bar of static pressure. This minimizes the risk of air and cavitation.

**Temperature:** Calibration temperature according to DS/EN 1434-5 is 50°C ± 5°C.

Water quality: No requirements

#### Installation - mechanical conditions:

To avoid flow disturbances inlet pipes and distance pieces must have the same nominal diameter as the sensors (see *Table 21*). There should be min. 5 x DN between the sensors. With bends etc. there should be a min. distance of 10 x DN. If tests are made at low flow through a bypass at right angles to the pipe, it would be an advantage to mount an absorber of pressure fluctuations due to the angle of the inlet pipe. This can be a flexible tube on the bypass. In addition, it would be advantageous to fit a flow straightener before the first distance piece. Flow disturbances such as pulsations, e.g. pump fluctuations must be minimized. In connection with calibration, a code of practice concerning distance pieces has been made on the basis of years of experience:

The length of the distance piece must be 10 x DN.

The diameter of the distance piece must be:

| Connection      | Distance piece | Gland |
|-----------------|----------------|-------|
| G¾ (R½) DN15    | ø15            | ø14   |
| G1 (R3/4) DN20  | ø20            | ø19,5 |
| DN20            | ø20            |       |
| G5/4 (R1) DN25  | ø25            | ø25,5 |
| DN25            | ø25            |       |
| G1½ (R5/4) DN32 | ø32            | ø32   |
| G2 (R1½) DN40   | ø40            | ø39   |
| DN40            | ø40            |       |
| DN50            | ø50            |       |
| DN65            | ø65            |       |
| DN80            | ø80            |       |
| DN100           | ø100           |       |
| DN125           | ø125           |       |

Table 21. Distance pieces.

#### **Installation - electrical conditions:**

To avoid external disturbances and to achieve an electrical interface as that of MULTICAL®, we recommend that you use a PULSE TESTER.

## **10.2 PULSE TESTER**

During a calibration process it is often practical to use PULSE TESTER type 66-99-279 with the following functions:

Galvanically separated pulse outputs

Integral supply for ULTRAFLOW®

LCD-display with counter

Externally controlled "Hold" function

Can be fitted directly on a MULTICAL® base unit

## 10.3 Technical data for PULSE TESTER

Pulse inputs (M1/M2)

Counter inputs Max. frequency: 128 Hz
Active signal Amplitude: 2.5 - 5 Vpp

Pulse duration >1 msec.

Passive signal Internal pull-up  $680 \text{ k}\Omega$ Internal supply 3.65 V lithium battery

Note! There are one or two pulse inputs/outputs depending on the choice of base unit

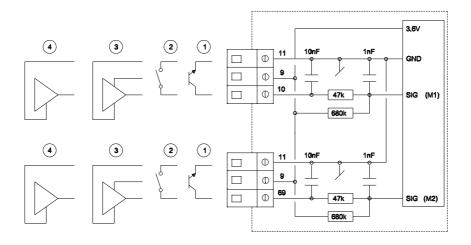



Figure 23

#### 1 Flow sensor with transistor output

The transmitter is normally an optocoupler with FET or transistor output to be connected to terminals 10 and 11 for water meter M1 or terminals 69 and 11 for water meter M2.

The leak current of the transistor must not exceed 1  $\mu A$  in off-state, and  $U_{CE}$  in on-state must not exceed 0.5 VDC.

#### 2 Flow sensor with relay or reed contact output

The transmitter is a reed contact, which is normally mounted on vane wheel and Woltmann meters, or the relay output from e.g. MID-meters. This type of transmitter should not be used as the quick pulse input may cause bounce problems.

#### 3 Flow sensor with active pulse output, supplied from the pulse tester

This connection is used together with either Kamstrup's ULTRAFLOW® or Kamstrup's electronic pick-up for vane wheel meters.

| Connection (M1) | 9: Red (9A) | 10: Yellow (10A) | 11: Blue (11A) |
|-----------------|-------------|------------------|----------------|
| Connection (M2) | 9: Red (9A) | 69: Yellow (10A) | 11: Blue (11A) |

Table 22

## 4 Flow sensor with active output and integral supply

Flow sensors with active signal output must be connected as shown in *Figure 24*. The signal level must be between 3.5 and 5 V. Higher signal levels can be connected via a passive voltage divider, e.g. of 47 k $\Omega$ /10 k $\Omega$  at a signal level of 24 V.

## Pulse outputs (M1/M2)

#### **Two-wire connection:**

Voltage <24 VLoad  $>1.5\Omega$ 

#### Three-wire connection

 $\begin{array}{cc} \text{Voltage} & 5...30 \text{ V} \\ \text{Load} & >5 \text{ k}\Omega \end{array}$ 

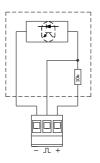



Figure 24

The outputs are galvanically separated and protected against overvoltage and reversed polarity.

Max. counter capacity before overflow is 9,999,999 counts.

## 10.4 Hold function

When the Hold input is activated (high level supplied to input), counting stops.

When the Hold signal is removed (low level supplied to input), counting restarts.

The counters can also be reset by pressing the right key on the front panel (Reset).

Input Galvanically isolated
Input protection Against reversed polarity
"Open input" Count (see Figure 25)

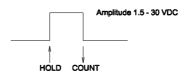



Figure 25

## 10.5 Push-button functions



Figure 26. The left push button shifts between readings/counts of the two flow sensor inputs. In the display M1 and M2 respectively indicate the currently displayed flow sensor inputs/counters.



Figure 27. The right push-button resets both counters (M1 and M2).

# 10.6 Using the PULSE TESTER

The PULSE TESTER can be used in the following ways:

Standing start/stop of flow sensor using the integral pulse counters.

Standing start/stop of flow sensor using the pulse outputs for external test equipment.

Flying start/stop of flow sensor using the integral counters controlled by external equipment (Sample & Hold).

Flying start/stop of flow sensor using the pulse outputs controlled by external equipment (Sample & Hold).

# 10.7 Spare parts

| Description                          | Type No.      |
|--------------------------------------|---------------|
| Battery D-cell                       | 66-00-200-100 |
| Cable retainer (secures the battery) | 1650-099      |
| 2-pole plug (female)                 | 1643-185      |
| 3-pole plug (female)                 | 1643-187      |
| PCB (66-R)                           | 5550-517      |

Table 23

# 10.8 Changing the battery

If the PULSE TESTER is used continuously we recommend that the battery be replaced once a year. Connect the battery to the terminals marked "batt.", the red wire to + and the black one to -.

**Current consumption:** 

Power consumption with no sensors connected 400  $\mu$ A Max. power consumption with two ULTRAFLOW® connected 1.5 mA

**Note!** If the base unit is fitted with battery or externally supplied, the PULSE TESTER's integral supply must be disconnected (the plug must be removed).

# 11 METERTOOL

## 11.1 Introduction

METERTOOL is a collection of programs for servicing Kamstrup heat meters.

"METERTOOL for ULTRAFLOW® X4" is a Windows®-based software. In combination with a PC and interface the software makes it possible to adjust ULTRAFLOW® X4.

METERTOOL has been developed to provide laboratories a simple and effective access to programming/adjusting ULTRAFLOW® X4. Furthermore, It is used for programming the Pulse Divider incl. printing of label for same.

# 11.2 System Requirements for PC

METERTOOL requires minimum Windows XP SP3, Windows Vista or Windows 7 (32 or 64 bits) or newer as well as Microsoft Internet Explorer 5.01.

#### Minimum requirements:

Pentium 4 or equivalent (Atom processor/netbooks/mini PC's are not supported)

2 GB RAM

10 GB HD

Display resolution 1024 x 768 USB as well as CD-ROM drive

Printer installed

Administrator rights to the PC are required in order to install and use the program.

The programs must be installed under the login to be subsequently used for the programs.

## 11.2.1 Interface

The following interfaces can be used:

ULTRAFLOW® 54 type 66-99-141 USB port for connection to PC and four-pole plug for flow sensor

ULTRAFLOW® 14/24 type 66-99-002 Adapter for connecting ULTRAFLOW® 14/24 (mounted on 66-99-141)

Pulse Divider type 66-99-140 COM port for connection to PC and eight-pole plug for Pulse Divider

In order to print a label for the Pulse Divider a printer must be installed and connected.

NOTE: The supply to ULTRAFLOW® and/or Pulse Divider, if any, must be disconnected during programming. The sensors are powered via the connected programming interface.

The USB Interface includes a converter box which secures galvanic separation of the supply to the flow sensor.

In order to mount the plug in the flow sensor, the sealing cover must be removed. If the sensor is used where verification is required, an authorised laboratory must re-verify and reseal the sensor before it is remounted. The positions of laboratory labels and year marks appear from *Figure 21* and *Figure 22*.



Figure 28. Location of the four-pole plug in ULTRAFLOW<sup>®</sup> 54.



Figure 29. Location of the four-pole plug incl. ULTRAFLOW $^{\circ}$  14 adapter in ULTRAFLOW $^{\circ}$  14/24 (MULTICAL $^{\circ}$  61/62).



Figure 30. Location of the four-pole plug in ULTRAFLOW® 54 DN150...250.

#### 11.2.2 Installation

Check that system requirements are fulfilled.

Close other open programs before starting the installation.

Insert the CD in the drive and follow the program's directions during the installation.

<u>NOTE</u>: The files used for installation must be saved on a CD or in a local folder in the PC. Installation is not possible using files from a USB-stick or an external drive. If the installation program does not start automatically, the installation can be started by typing "D:\CD\launch.exe" under "Run" in the Start menu (provided that the drive specification of the CD is "D").

When the installation has been completed, the icon "KAMSTRUP METERTOOL" will appear from the Start menu and as a link on the desktop. Click on the new icon "KAMSTRUP METERTOOL" for the list of "METERTOOL" programs selected during installation to be displayed. Double-click on "METERTOOL UFx4" in order to start the program METERTOOL for ULTRAFLOW® X4.

# 11.3 METERTOOL for ULTRAFLOW® X4

The menu structure of METERTOOL for ULTRAFLOW® X4 is as follows:



#### 11.3.1 Files


The menu "Files" includes:

**Select Com-Port:** Setup of COM port for interface of

flow sensor/Pulse Divider.

**Exit:** Terminates METERTOOL.

Force Database Update: Online-update of flow sensor database.

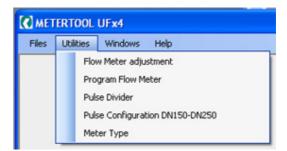


## 11.3.2 Utilities

The menu "Utilities" includes:

**Flow Meter Adjustment:** Reading and correction of flow curve.

**Program Flow Meter:** Programming standard flow curve for


flow sensor.

**Pulse Divider:** Programming Pulse Divider.

**Pulse Configuration** To be used by specially trained

**DN150...250:** personnel only.

**Meter Type:** Information on flow sensor and equipment.



## 11.3.3 Windows

The function makes it possible to change between the open dialog boxes of the program.

## 11.3.4 Help

**About:** Includes program numbers and revisions of the various components of the installed version.



# 11.4 Application

Flow sensor adjustment.

Before adjusting a sensor you must make sure that the sensor operates satisfactorily in the flow rig in question. See *paragraph 9 Calibrating ULTRAFLOW*®.

If it is necessary to adjust the sensor more than a few percent, the sensor is probably defective, or has a different error, and should not be adjusted.

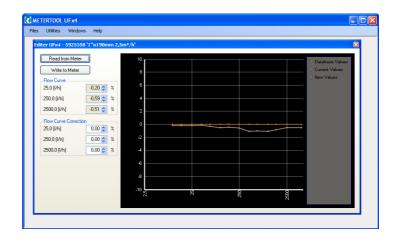
# 11.4.1 COM-port selection

Open "Select Com Port":

Select a COM-port for ULTRAFLOW® X4.

The USB driver must be installed before connecting the interface.

The related COM port will not appear from the list until the USB interface has been connected.


Select COM port for Pulse Divider.

Activate "OK" in order to save the selected ports.



## 11.4.2 Flow meter adjustment

Open "Flow Meter Adjustment":

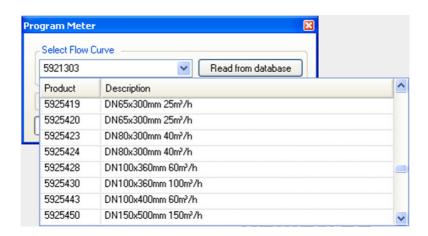


"Read from Meter": Reads data from the connected flow sensor.

Flow curve number - 5945357 - and meter dimensions appear from the heading. This number will also appear from the meter's label.

The field "Flow Curve" shows the values of the sensor in question compared to the standard curve. These values are also shown in the form of a graph.

The required correction of  $q_i$ ,  $0.1xq_p$  and  $q_p$  can be entered into the field "Flow Curve Correction".


"Write to Meter": Writes the correction to the connected flow sensor.

After the adjustment the flow sensor is ready for renewed test.

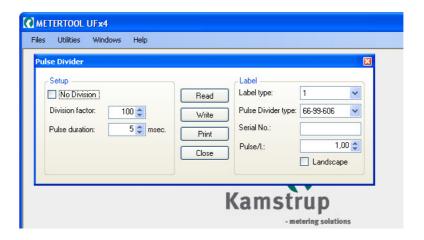
## 11.4.3 Programming of standard flow curve

Open "Flow Meter Adjustment":

The 59xxxxx no. appears from the sensor's type label.



"Read from database": Enters the selected standard flow curve into the program.


"Write to Meter": Programs the flow sensor with the entered standard flow curve.

The flow sensor is now ready for test.

#### 11.4.4 Pulse Divider

Setup and programming of Pulse Divider. A Pulse Divider is used for adapting flow signals to calculators, e.g. if a "foreign" calculator is connected to Kamstrup ULTRAFLOW® and the codings (number of pulses CCC or pulse duration) do not correspond.

Open "Pulse Divider":



"Read": Reads the current coding of the Pulse Divider.

"Write": Programs the Pulse Divider with the entered data.

"Label type": Makes it possible to select position on Kamstrup label sheet.

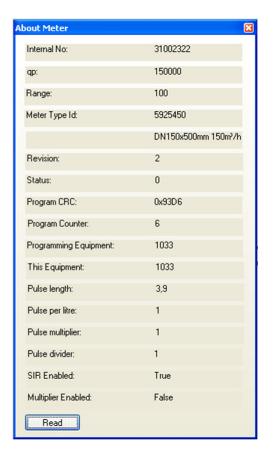
"Print": Prints Pulse Divider Label on the standard printer selected in the PC.

"Close": Terminates Pulse Divider.

| ULTR                     | AFLOW <sup>®</sup>    | Pulse Divider         |         |                       |         |                       |         |                       |         |
|--------------------------|-----------------------|-----------------------|---------|-----------------------|---------|-----------------------|---------|-----------------------|---------|
| q <sub>p</sub><br>[m³/h] | Pulse fig.<br>[imp/l] | Pulse fig.<br>[l/imp] | Divider |
| 0,6                      | 300                   | 1                     | 300     | 2,5                   | 750     |                       |         |                       |         |
| 1.5                      | 100                   | 1                     | 100     | 2,5                   | 250     | 10                    | 1000    |                       |         |
| 2.5                      | 60                    | 1                     | 60      | 2,5                   | 150     | 10                    | 600     |                       |         |
| 3                        | 50                    | 1                     | 50      | 2,5                   | 125     | 10                    | 500     |                       |         |
| 3.5                      | 50                    | 2.5                   | 125     | 10                    | 500     | 25                    | 1250    |                       |         |
| 6                        | 25                    | 10                    | 250     | 25                    | 625     |                       |         |                       |         |
| 10                       | 25                    | 10                    | 250     | 25                    | 625     |                       |         |                       |         |
| 10                       | 15                    | 10                    | 150     | 25                    | 375     |                       |         |                       |         |
| 15                       | 10                    | 10                    | 100     | 25                    | 250     | 100                   | 1000    | 250                   | 2500    |
| 25                       | 10                    | 10                    | 100     | 25                    | 250     | 100                   | 1000    | 250                   | 2500    |
| 25                       | 6                     | 10                    | 60      | 25                    | 150     | 100                   | 600     | 250                   | 1500    |
| 40                       | 5                     | 25                    | 125     | 100                   | 500     | 250                   | 1250    |                       |         |
| 60                       | 2.5                   | 100                   | 250     | 250                   | 625     |                       |         |                       |         |
| 100                      | 1.5                   | 100                   | 150     | 250                   | 375     |                       |         |                       |         |
| 150                      | 1                     | 100                   | 100     | 250                   | 250     | 1000                  | 1000    | 2500                  | 2500    |
| 250                      | 0.6                   | 100                   | 60      | 250                   | 150     | 1000                  | 600     | 2500                  | 1500    |
| 400                      | 0.4                   | 250                   | 100     | 1000                  | 400     | 2500                  | 1000    |                       |         |
| 600                      | 0.25                  | 1000                  | 250     | 2500                  | 625     |                       |         |                       |         |
| 1000                     | 0.25                  | 1000                  | 250     | 2500                  | 625     |                       |         |                       |         |

Table 24. Pulse division table (pulse duration divided pulses std. 100 ms).

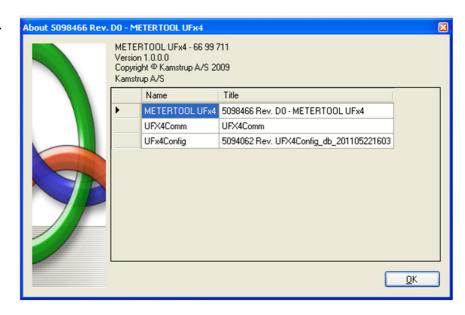
| ULTR                     | AFLOW <sup>®</sup>      | Pulse Divid<br>(pulse dura |         |                           | ider & 11 EVL<br>ation 100 ms) |
|--------------------------|-------------------------|----------------------------|---------|---------------------------|--------------------------------|
| q <sub>p</sub><br>[m³/h] | Pulse figure<br>[imp/l] | Pulse figure<br>[l/Pulse]  | Divider | Pulse figure<br>[l/Pulse] | Divider                        |
| 0.6                      | 300                     | 1                          | 300     | 2.5                       | 750                            |
| 1.5                      | 100                     | 1                          | 100     | 2.5                       | 250                            |
| 2.5                      | 60                      | 1                          | 60      | 2.5                       | 150                            |
| 3                        | 50                      | 1                          | 50      | 2.5                       | 125                            |
| 3.5                      | 50                      | 1                          | 50      | 2.5                       | 125                            |
| 6                        | 25                      | 1                          | 25      | 25                        | 625                            |
| 10                       | 25                      | 1                          | 25      | 25                        | 625                            |
| 10                       | 15                      | 1                          | 15      | 25                        | 375                            |
| 15                       | 10                      | 10                         | 100     | 25                        | 250                            |
| 25                       | 10                      | 10                         | 100     | 25                        | 250                            |
| 25                       | 6                       | 10                         | 60      | 25                        | 150                            |
| 40                       | 5                       | 10                         | 50      | 25                        | 125                            |
| 60                       | 2,5                     | 10                         | 25      | 250                       | 625                            |
| 100                      | 1,5                     | 10                         | 15      | 250                       | 375                            |
| 150                      | 1                       | 100                        | 100     | 250                       | 250                            |
| 250                      | 0.6                     | 100                        | 60      | 250                       | 150                            |
| 400                      | 0.4                     | 100                        | 40      | 250                       | 100                            |
| 600                      | 0.25                    | 100                        | 25      | 2500                      | 625                            |
| 1000                     | 0.25                    | 100                        | 25      | 2500                      | 625                            |


Table 25. Pulse division table for use together with Kamstrup EVL.

For other variants, please see installation guide for Pulse Divider No. 5511-727.

## 11.4.5 Meter type

Open "Meter type":


"Read": Reads flow sensor information.



## 11.4.6 Help

Open "About":

Displays: Revision numbers.



# 11.5 Update

The program includes a database comprising data of the variants released at the time the program was produced.

Open "Force Database Update".



The METERTOOL database is updated by connecting the PC to the Internet and activating "Force Database Update". The program now connects to a Kamstrup server and downloads the newest database.

After update the following message appears:

The database has been updated, please open METERTOOL UFx4 again.



# 12 Approvals

# 12.1 The Measuring Instrument Directive

ULTRAFLOW<sup>®</sup> 54 is supplied with a CE-marking according to MID (2004/22/EC). The certificates have the following numbers:

B-module: DK-0200-MI004-008 D-module: DK-0200-MIQA-001

Please contact Kamstrup A/S for further details on type approval and verification.

# 12.2 CE marking

ULTRAFLOW® 54 is marked according to the following directives:

EMC directive 2004/108/EC

LV directive 2006/95/EC (together with Pulse Transmitter or Pulse Divider)

PE directive 97/23/EC (DN50...DN125) category I

# 12.3 Declaration of conformity



## **Declaration of Conformity**

Overensstemmelseserklæring Déclaration de conformité Konformitätserklärung Deklaracja Zgodnosci Declaración de conformidad Declaratie de conformitate

We Vi Nous Wir My Nosotros Noi Kamstrup A/S Industrivej 28, Stilling DK-8660 Skanderborg Denmark Tel: +45 89 93 10 00

declare under our sole responsibility that the product(s):

erklærer under eneansvar, at produkt(erne):

déclarons sous notre responsabilité que le/les produit(s): erklären in alleiniger Verantwortung, dass/die Produkt(e): deklarujemy z pełną odpowiedzialnoscią że produkt(y):

Declaramos, bajo responsabilidad propia que el/los producto declaram pe proprie raspundere ca produsul/produsele:

| Instrument             | Туре                                                                        | Type No.:                                                                | Classes                                                               | Type Approval Ref.:                                                                                   |
|------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Heat Meter             | MULTICAL® 401                                                               | 66-V and 66-W                                                            | CI 2/3,M1,E1                                                          | DK-0200-MI004-001                                                                                     |
| Heat Meter             | MULTICAL® 402                                                               | 402-V, 402-W, 402-T                                                      | CI 2/3,M1,E1                                                          | DK-0200-MI004-013                                                                                     |
| Temperature<br>Sensors | PL and DS                                                                   | 65-00-0A/B/C/D<br>66-00-0F/G<br>65-00-0L/M/N/P<br>66-00-0Q3/4<br>65-56-4 | M1                                                                    | DK-0200-MI004-002                                                                                     |
| Flow Sensor            | ULTRAFLOW®<br>qp 0.6400 m³/h                                                | 65-S/R/T                                                                 | CI 3, M1, E1                                                          | DK-0200-MI004-003                                                                                     |
| Flow Sensor            | ULTRAFLOW®<br>qp 0.640 m³/h<br>and qp 150400 m³/h                           | 65-S/R/T                                                                 | Cl 2/3, M1, E1                                                        | DK-0200-MI004-003                                                                                     |
| Calculator             | MULTICAL® 601<br>MULTICAL® 601+<br>MULTICAL® 602<br>SVM S6<br>MULTICAL® 801 | 67-A/B/C/D<br>67-E<br>602-A/B/C/D<br>S6-A/B/C/D<br>67-F/G/K/L            | M1, E1/E2<br>M1, E1/E2<br>M1, E1/E2<br>M1, E1/E2<br>M1, E1/E2         | DK-0200-MI004-004<br>DK-0200-MI004-004<br>DK-0200-MI004-020<br>DK-0200-MI004-020<br>DK-0200-MI004-009 |
| Flow Sensor            | ULTRAFLOW® 54/34<br>qp 0.6100 m³/h<br>qp 1501000 m³/h                       | 65-5/65-3                                                                | CI 2/3<br>M1, E1/E2<br>M1/M2, E1/E2                                   | DK-0200-MI004-008                                                                                     |
| Water Meter            | MULTICAL® 21<br>MULTICAL® 41<br>MULTICAL® 61<br>MULTICAL® 62                | 021-66<br>66-Z<br>67-Z<br>62-Z                                           | Cl 2, M1, E1/E2<br>Cl 2, M1, E1<br>Cl 2, M1, E1, B<br>Cl 2, M1, E1, B |                                                                                                       |

are in conformity with the requirements of the following directives: erioverensstemmelse med kravene i følgende direktiver:

er i overensstemmelse med kravene i følgende direktiver: sont conforme(s) aux extgenecs de la/des directives: mit den Anforderungen der Richtlinle(n) komform ist/sind: są zgodne z wymaganiami następujących dyrektyw: es/son conformes con los requerimientos de las siguintes directivas: este/sunt in conformitate cu cerintele urmatoarelor directive:

Measuring Instrument Directive **EMC Directive** 

LVD Directive

PE-Directive (Pressure)

R&TTE

2004/22/EC 2004/108/EC 2006/95/EC 97/23/EC

1999/5/EC

Notified Body, Module D Certificate:

Force Certification A/S EC Notified Body nr. 0200 Park Alle 345, 2605 Brøndby Denmark

Date: 2012-04-16 Sign.:

> Lars Bo Hammer **Quality Assurance Manager**

5518-050,Rev.: V1, Kamstrup A/S, DK8660 Skanderborg, Denmark

# 13 Troubleshooting

Before sending in the sensor to be repaired or checked, please use the error detection table below to help you clarify the possible cause of the problem.

| Symptom                                  | Possible cause               | Proposal for correction                                                                                                                              |
|------------------------------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| No updating of display values            | No power supply              | Replace battery or check mains supply                                                                                                                |
| No display function (blank display)      | No voltage supply and backup | Replace back-up cell. Replace battery or check mains supply                                                                                          |
| No a ccumulation of m³                   | No volume pulses             |                                                                                                                                                      |
|                                          | Incorrect connection         | Check flow sensor connection (Check with PULSE TESTER, if necessary)                                                                                 |
|                                          | Flow sensor is inverted      | Check flow sensor direction                                                                                                                          |
|                                          | Air in sen sor/cavitation    | Check installation angle. Check if there is air in the system or cavitation from valves and pumps. If possible, try to increase the static pressure. |
|                                          | Flow sensor error            | Replace the flow sensor/Send meter for repair                                                                                                        |
| Erroneous accumulation of m <sup>3</sup> | Erroneous programming        | Check that meter factors of calculator and flow sensor correspond                                                                                    |
|                                          | Air in sensor/cavitation     | Check the installation angle. Check if there is air in the system or cavitation from valves and pumps. Increase the static pressure, if possible     |
|                                          | Flow sensor error            | Replace the flow meter/send sensor for repair                                                                                                        |

# 14 Disposal

Kamstrup A/S holds an environmental certification according to ISO 14001, and as part of Kamstrup's environmental policy only materials which can be recovered environmentally correctly are used to the greatest possible extent.

Kamstrup A/S has climate accounts (Carbon footprint) for all meter types.



As of August 2005 heat meters from Kamstrup are marked according to the EU directive 2002/96/EEA and the standard EN 50419.

The purpose of the marking is to inform our customers that the heat meter cannot be disposed of as ordinary waste.

## • Disposal by Kamstrup A/S

Kamstrup accepts worn-out meters for environmentally correct disposal according to previous agreement. The disposal is free of charge to our customers, except for the cost of transportation to Kamstrup.

#### • The customer sends for disposal

The meters must <u>not</u> be disassembled prior to dispatch. The complete meter is handed in for approved national/local disposal. Enclose a copy of this page in order to inform the recipient of the contents.

Please note that lithium cells and meters containing lithium cells must be shipped as dangerous goods. Please see Kamstrup document 5510-408, "Lithium batteries - Handling and disposal".

| Meter part                                                             | Material                                                          | Recommended disposal                         |
|------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------|
| Lithium cells in Pulse Transmitter/<br>Pulse Divider (D-cell)          | Lithium and thionyl chloride > UN<br>3091 < D-cell: 4.9 g lithium | Approved deposit of lithium cells            |
| PCBs in Pulse Transmitter,<br>Pulse Divider and ULTRAFLOW <sup>®</sup> | Coppered epoxy laminate, components soldered on                   | PCB scrap for concentration to noble metals  |
| Flow sensor cables                                                     | Copper with silicone mantle                                       | Cable recycling                              |
| Plastic parts, cast                                                    | PES, PBT and PC. See material data                                | Plastic recycling                            |
| ULTRAFLOW <sup>®</sup> meter case                                      | DZR brass/red brass/stainless steel                               | Metal recycling                              |
| Packing                                                                | Recycled cardboard and EPS                                        | Cardboard recycling (Resy) and EPS recycling |

Please direct any questions you may have concerning environmental matters to:

#### Kamstrup A/S

FAO: Environmental and quality assurance department Fax.: +45 89 93 10 01 info@kamstrup.com

# 15 Documents

|                           | Danish   | English  | German   | Russian  |
|---------------------------|----------|----------|----------|----------|
| Technical Description     | 5512-384 | 5512-385 | 5512-575 | 5512-576 |
| Data sheet                | 5810-588 | 5810-589 | 5810-590 | 5810-593 |
| Installation instructions | 5512-951 | 5512-952 | 5512-953 | 5512-956 |

Table 26